Hilbert spaces of tempered distributions, Hermite expansions and sequence spaces
نویسندگان
چکیده
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولDecomposition of Spaces of Distributions Induced by Hermite Expansions
Decomposition systems with rapidly decaying elements (needlets) based on Hermite functions are introduced and explored. It is proved that the Triebel-Lizorkin and Besov spaces on R induced by Hermite expansions can be characterized in terms of the needlet coefficients. It is also shown that the Hermite Triebel-Lizorkin and Besov spaces are, in general, different from the respective classical sp...
متن کاملBanach Spaces and Hilbert Spaces
A sequence {vj} is said to be Cauchy if for each > 0, there exists a natural number N such that ‖vj−vk‖ < for all j, k ≥ N . Every convergent sequence is Cauchy, but there are many examples of normed linear spaces V for which there exists non-convergent Cauchy sequences. One such example is the set of rational numbers Q. The sequence (1.4, 1.41, 1.414, . . . ) converges to √ 2 which is not a ra...
متن کاملSampling Expansions in Reproducing Kernel Hilbert and Banach Spaces
We investigate the construction of all reproducing kernel Hilbert spaces of functions on a domain Ω ⊂ R that have a countable sampling set Λ ⊂ Ω. We also characterize all the reproducing kernel Hilbert spaces that have a prescribed sampling set. Similar problems are considered for reproducing kernel Banach spaces, but now with respect to Λ as a p-sampling set. Unlike the general p-frames, we pr...
متن کاملSupersymmetric Distributions, Hilbert Spaces of Supersymmetric Functions and Quantum Fields
The recently investigated Hilbert-Krein and other positivity structures of the superspace are considered in the framework of superdistributions. These tools are applied to problems raised by the rigorous supersymmetric quantum field theory.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1991
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500007173